Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ying Peng,^a Su-Yuan Xie,^a Shun-Liu Deng,^a Rong-Bin Huang^{a*} and Lan-Sun Zheng^b

^aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ^bState Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.050 wR factor = 0.110Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,2,3,5,6,7,8,9-Octachlorocyclopenta[*def*]-phenanthren-4-one

The title compound, $C_{15}Cl_8O$, was separated from the products of a solvothermal reaction of metallic sodium and carbon tetrachloride in air in a pressured autoclave. The molecule is bisected by a crystallographic mirror plane and has essentially $C_{2\nu}$ symmetry.

Received 20 April 2004 Accepted 23 April 2004 Online 30 April 2004

Comment

Alkali metals and polyhalogenated alkanes under high pressure/temperature in an autoclave can undergo different reactions under different conditions and give different products, for example, diamond powders from CCl₄ (Li et al., 1998), multi-wall carbon nanotubes and hollow spherical graphite from hexachlorobenzene (Jiang et al., 2000), and carbon concentric spheres ('onions') from hexachloropentadiene (Li et al., 2001). Long-standing interest has been focused on the fabrication of fullerenes, and various techniques, such as high-voltage electric discharge in liquid (Huang et al., 1997) or vaporized (Xie et al., 2001) chloroform and CCl₄, have been used to generate and trap the intermediates of fullerenes. In such a process, we have isolated perchlorinated aromatic hydrocarbons (PCAHs), which can be used as building blocks for fullerenes, and also identified a trace of C₆₀ and C₇₀ (Xie et al., 2001). On the other hand, under solvothermal conditions, a series of perchlorinated fullerene fragments, such as C₂₆H₈Cl₁₀ (Peng et al., 2001) and $C_{18}Cl_{12}O_2$ (Peng et al., 2004), have been obtained and characterized by X-ray diffraction.

We report here the synthesis and crystal structure of the title compound, (I) (Fig. 1), a new perchlorinated compound, which was separated from the products of a solvothermal reaction. All bond lengths and angles in (I) are normal (Table 1). The molecule is bisected by a crystallographic mirror plane and has essentially $C_{2\nu}$ symmetry.

Experimental

Metallic sodium (3.0 g) was added to carbon tetrachloride (25 ml) in a stainless-steel autoclave with a capacity of 50 ml. The autoclave was heated to 673 K, maintained at that temperature for 40 h and then allowed to cool to room temperature. The resulting dark powder was

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

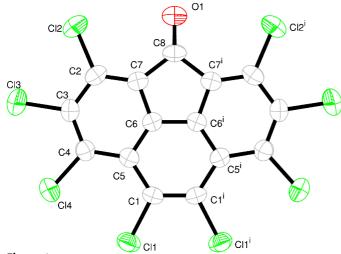


Figure 1 A view of (I), with 50% probability displacement ellipsoids. [Symmetry code: (i) -x + 1, y, z.]

washed with water several times and dried in a vacuum at room temperature. The dried product was extracted with toluene/cyclohexane in a volume ratio of 1:1. The extract was separated by column chromatography on neutral alumina, using toluene/cyclohexane as eluant. Yellow crystals suitable for X-ray diffraction were obtained from the yellow solution upon slow evaporation of the solvent in air. The product was analyzed by mass spectrometry. The molecular peak appeared at a mass/charge ratio of 480. The isotopic distribution pattern of chlorine shows that the molecule contains eight Cl atoms.

Crystal data

•	
C ₁₅ Cl ₈ O	Mo $K\alpha$ radiation
$M_r = 479.75$	Cell parameters from 25
Orthorhombic, Cmca	reflections
a = 22.979 (5) Å	$\theta = 8.0 15.0^{\circ}$
b = 8.7180 (17) Å	$\mu = 1.43 \text{ mm}^{-1}$
c = 15.697 (3) Å	T = 293 (2) K
$V = 3144.6 (11) \text{ Å}^3$	Prism, yellow
Z = 8	$0.32 \times 0.26 \times 0.18 \text{ mm}$
$D_x = 2.027 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius CAD-4	1078 reflections with $I > 2\sigma(I)$	
diffractometer	$\theta_{\rm max} = 26.0^{\circ}$	
ω scans	$h = -28 \rightarrow 0$	
Absorption correction: ψ scan	$k = 0 \rightarrow 10$	
(North et al., 1968)	$l = -19 \rightarrow 0$	
$T_{\min} = 0.657, T_{\max} = 0.783$	3 standard reflections	
1588 measured reflections	frequency: 60 min	
1588 independent reflections	intensity decay: none	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0421P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 1.1559 <i>P</i>]
$wR(F^2) = 0.110$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1588 reflections	$\Delta \rho_{\text{max}} = 0.30 \text{ e Å}^{-3}$
112 parameters	$\Delta \rho_{\min} = -0.29 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (\mathring{A} , $^{\circ}$).

Cl1-C1	1.717 (4)	C3-C4	1.382 (6)
Cl2-C2	1.713 (4)	C4-C5	1.432 (5)
Cl3-C3	1.724 (4)	C5-C6	1.379 (5)
Cl4-C4	1.706 (4)	C6-C7	1.398 (5)
$C1-C1^{i}$	1.392 (8)	$C6-C6^{i}$	1.429 (8)
C1-C5	1.450 (5)	C7-C8	1.498 (5)
C2-C7	1.365 (5)	C8-O1	1.206 (7)
C2-C3	1.413 (6)	$C8-C7^{i}$	1.498 (5)
C1i-C1-C5	122.2 (2)	C6-C5-C4	113.8 (4)
C1i-C1-Cl1	117.36 (13)	C6-C5-C1	114.5 (3)
C5-C1-Cl1	120.4(3)	C4-C5-C1	131.6 (4)
C7-C2-C3	118.1 (4)	C5 - C6 - C7	127.0 (4)
C7-C2-C12	121.1 (3)	$C5-C6-C6^{i}$	123.2 (2)
C3-C2-C12	120.8 (3)	$C7 - C6 - C6^{i}$	109.8 (2)
C4-C3-C2	122.9 (4)	C2 - C7 - C6	118.0 (4)
C4-C3-Cl3	119.8 (3)	C2-C7-C8	134.3 (4)
C2-C3-Cl3	117.3 (3)	C6 - C7 - C8	107.7 (4)
C3-C4-C5	120.2 (4)	O1-C8-C7	127.5 (2)
C3-C4-Cl4	117.3 (3)	$O1 - C8 - C7^{i}$	127.5 (2)
C5-C4-Cl4	122.4 (3)	$C7 - C8 - C7^{i}$	105.0 (5)

Symmetry code: (i) 1 - x, y, z.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1988); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the NSFC (grant Nos. 20271044, 20273052 and 20021002) and the Department of Science and Technology of China (2002 CCA01600).

References

Enraf-Nonius (1988). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. (1997). XCAD4. University of Marburg, Germany.

Huang, R.-B., Huang, W.-J., Wang, Y.-H., Tang, Z.-C. & Zheng, L.-S. (1997). J. Am. Chem. Soc. 117, 5954–5955.

Jiang, Y., Wu, Y., Zhang, S.-Y., Xu, C.-Y., Yu, W.-C., Xie, Y. & Qian, Y.-T. (2000). J. Am. Chem. Soc. 122, 12383–12384.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Li, C.-Y., Chiu, H.-T., Peng, C.-W., Yen, M.-Y., Chang, Y.-H. & Liu, C.-S. (2001). Adv. Mater. 13, 1105–1107.

Li, Y.-D., Qian, Y.-T., Liao, H.-W., Ding, Y., Yang, L., Xu, C.-Y., Li, F.-Q. & Zhou, G.-E. (1998). Science, 281, 246–247.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Peng, Y., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. (2001). Acta Cryst. E57, o617– o618.

Peng, Y., Xie, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L. S. (2004). Acta Cryst. E60, 0762–0763.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xie, S.-Y., Deng, S.-L., Yu, L.-J., Huang, R.-B. & Zheng, L.-S. (2001). J. Phys. Chem. B, 105, 1734–1738.